Clustermap
Nutrient Composition Matrix
Nutritional profiles of foods clustered by similarity
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(333)
nutrients = ['Protein', 'Carbs', 'Fat', 'Fiber', 'Vitamin A', 'Vitamin C',
'Calcium', 'Iron', 'Potassium', 'Sodium']
foods = ['Salmon', 'Chicken', 'Beef', 'Spinach', 'Broccoli', 'Banana',
'Rice', 'Quinoa', 'Almonds', 'Eggs', 'Milk', 'Tofu']
data = np.random.rand(10, 12) * 30
data[0, :3] += 40
data[0, 9:11] += 25
data[4:6, 3:5] += 50
data[1, 6:8] += 40
df = pd.DataFrame(data, index=nutrients, columns=foods)
groups = ['Meat']*3 + ['Vegetable']*2 + ['Fruit'] + ['Grain']*2 + ['Nut'] + ['Animal']*3
group_palette = {'Meat': '#ef4444', 'Vegetable': '#22c55e', 'Fruit': '#f59e0b',
'Grain': '#f97316', 'Nut': '#a855f7', 'Animal': '#3b82f6'}
col_colors = pd.Series(groups, index=foods).map(group_palette)
light_cmap = LinearSegmentedColormap.from_list('nutrient', ['#f8fafc', '#bfdbfe', '#3b82f6', '#1e40af'])
g = sns.clustermap(df, cmap=light_cmap, col_colors=col_colors,
method='average', metric='euclidean', standard_scale=0,
linewidths=0.5, linecolor='#e5e7eb',
figsize=(10, 8), dendrogram_ratio=(0.12, 0.12),
cbar_pos=(0.01, 0.08, 0.008, 0.12))
g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)
g.fig.suptitle('Food Nutrient Profiles', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕