Clustermap

Nutrient Composition Matrix

Nutritional profiles of foods clustered by similarity

Output
Nutrient Composition Matrix
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(333)

nutrients = ['Protein', 'Carbs', 'Fat', 'Fiber', 'Vitamin A', 'Vitamin C',
             'Calcium', 'Iron', 'Potassium', 'Sodium']
foods = ['Salmon', 'Chicken', 'Beef', 'Spinach', 'Broccoli', 'Banana', 
         'Rice', 'Quinoa', 'Almonds', 'Eggs', 'Milk', 'Tofu']

data = np.random.rand(10, 12) * 30
data[0, :3] += 40
data[0, 9:11] += 25
data[4:6, 3:5] += 50
data[1, 6:8] += 40

df = pd.DataFrame(data, index=nutrients, columns=foods)

groups = ['Meat']*3 + ['Vegetable']*2 + ['Fruit'] + ['Grain']*2 + ['Nut'] + ['Animal']*3
group_palette = {'Meat': '#ef4444', 'Vegetable': '#22c55e', 'Fruit': '#f59e0b', 
                 'Grain': '#f97316', 'Nut': '#a855f7', 'Animal': '#3b82f6'}
col_colors = pd.Series(groups, index=foods).map(group_palette)

light_cmap = LinearSegmentedColormap.from_list('nutrient', ['#f8fafc', '#bfdbfe', '#3b82f6', '#1e40af'])

g = sns.clustermap(df, cmap=light_cmap, col_colors=col_colors,
                   method='average', metric='euclidean', standard_scale=0,
                   linewidths=0.5, linecolor='#e5e7eb',
                   figsize=(10, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12))

g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)

g.fig.suptitle('Food Nutrient Profiles', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support