Calendar Heatmap

Photography Shots Calendar

Daily photo count tracked in neon pink gradient for photography enthusiasts.

Output
Photography Shots Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(129)

days = 365
photos = np.random.exponential(10, days).astype(int)
photos = np.clip(photos, 0, 100)
photos[np.random.choice(days, size=150, replace=False)] = 0

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(photos):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# CLAUDE.md Neon Pink palette
colors_neon = ['#ffffff', '#fce0f3', '#f97dc4', '#F527B0']
cmap = LinearSegmentedColormap.from_list('neon_pink', colors_neon, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=100)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#374151')

ax.set_title('Photography - Shots Per Day', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)

ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db') 
                   for c, l in zip(colors_neon, ['0', '1-25', '26-60', '61+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=4, 
          fontsize=8, facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151', title='Photos',
          title_fontsize=9)

total = int(np.sum(photos))
ax.annotate(f'{total:,} photos taken', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#F527B0', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support