Dendrogram

Polar Ward Clustering Dark

Ward method hierarchical clustering in polar coordinates

Output
Polar Ward Clustering Dark
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage, set_link_color_palette

np.random.seed(321)

n = 24
labels = [chr(65 + i) if i < 26 else f'A{i-26}' for i in range(n)]
data = np.random.rand(n, 6) * 80
Z = linkage(data, method='ward')

fig_temp, ax_temp = plt.subplots()
set_link_color_palette(['#27D3F5', '#F5276C', '#6CF527', '#F5B027', '#5314E6', '#F527B0'])
dn = dendrogram(Z, labels=labels, no_plot=False, color_threshold=0.55*max(Z[:,2]),
                above_threshold_color='#444444', ax=ax_temp)
plt.close(fig_temp)

icoord = np.array(dn['icoord'])
dcoord = np.array(dn['dcoord'])
colors = dn['color_list']

x_min, x_max = icoord.min(), icoord.max()
y_max = dcoord.max()

def to_polar(x, y):
    theta = (x - x_min) / (x_max - x_min) * 2 * np.pi * 0.95
    r = y / y_max * 0.55 + 0.4
    return theta, r

fig, ax = plt.subplots(figsize=(10, 10), subplot_kw={'projection': 'polar'}, facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

# Concentric rings
for r, alpha in [(0.5, 0.15), (0.7, 0.1), (0.9, 0.05)]:
    circle_theta = np.linspace(0, 2*np.pi, 100)
    ax.fill(circle_theta, [r]*100, color='#27D3F5', alpha=alpha)

for ic, dc, color in zip(icoord, dcoord, colors):
    thetas, rs = [], []
    for x, y in zip(ic, dc):
        t, r = to_polar(x, y)
        thetas.append(t)
        rs.append(r)
    
    ax.plot([thetas[0], thetas[1]], [rs[0], rs[1]], color=color, linewidth=2, alpha=0.95)
    ax.plot([thetas[2], thetas[3]], [rs[2], rs[3]], color=color, linewidth=2, alpha=0.95)
    if thetas[1] != thetas[2]:
        arc_thetas = np.linspace(min(thetas[1], thetas[2]), max(thetas[1], thetas[2]), 50)
        ax.plot(arc_thetas, [rs[1]]*len(arc_thetas), color=color, linewidth=2, alpha=0.95)

leaf_positions = np.linspace(x_min, x_max, n)
for i, (pos, label) in enumerate(zip(leaf_positions, dn['ivl'])):
    theta, _ = to_polar(pos, 0)
    rotation = np.degrees(theta) - 90 if np.pi/2 < theta < 3*np.pi/2 else np.degrees(theta) + 90
    ha = 'right' if np.pi/2 < theta < 3*np.pi/2 else 'left'
    ax.text(theta, 0.28, label, ha=ha, va='center', fontsize=7, color='white',
            rotation=rotation, rotation_mode='anchor', fontweight='bold')
    
    color = ['#27D3F5', '#F5276C', '#6CF527', '#F5B027', '#5314E6', '#F527B0'][i % 6]
    ax.scatter(theta, 0.4, c=color, s=35, zorder=5, edgecolor='white', linewidth=0.5)

ax.set_ylim(0, 1.02)
ax.set_yticklabels([])
ax.set_xticklabels([])
ax.spines['polar'].set_visible(False)
ax.grid(False)

ax.set_title('Ward Clustering - Polar View', fontsize=14, color='white', fontweight='bold', y=1.08)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support