Heatmap
Product Comparison Heatmap
Light theme heatmap comparing product features
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
np.random.seed(42)
products = ['Product A', 'Product B', 'Product C', 'Product D', 'Product E']
features = ['Price', 'Quality', 'Design', 'Durability', 'Support', 'Value']
data = np.random.uniform(2, 5, (len(products), len(features)))
colors = ['#1e293b', '#9f1239', '#e11d48', '#fb7185', '#fecdd3']
cmap = LinearSegmentedColormap.from_list('product', colors, N=256)
cell_w, cell_h = 0.88, 0.82
for i in range(len(products)):
for j in range(len(features)):
val = data[i, j]
rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
boxstyle="round,pad=0.02,rounding_size=0.12",
facecolor=cmap((val-1)/4), edgecolor='#e2e8f0', linewidth=1.5)
ax.add_patch(rect)
ax.text(j, i, f'{val:.1f}', ha='center', va='center', color='#1e293b', fontsize=10, fontweight='bold')
ax.set_xlim(-0.5, len(features)-0.5)
ax.set_ylim(-0.5, len(products)-0.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(len(features)))
ax.set_yticks(range(len(products)))
ax.set_xticklabels(features, color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(products, color='#1e293b', fontsize=11, fontweight='500')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(1, 5))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Score (1-5)', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')
for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Product Feature Comparison', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Heatmap examples
☕