Calendar Heatmap

Productivity Score Calendar

Daily productivity tracking with focus time and task completion metrics.

Output
Productivity Score Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(444)

days = 365
# Lower on weekends
productivity = np.zeros(days)
for i in range(days):
    dow = i % 7
    if dow < 5:
        productivity[i] = np.random.choice([3, 5, 6, 7, 8, 9, 10], p=[0.05, 0.1, 0.15, 0.25, 0.25, 0.15, 0.05])
    else:
        productivity[i] = np.random.choice([0, 2, 4, 5, 6], p=[0.3, 0.25, 0.25, 0.15, 0.05])

prod_levels = np.digitize(productivity, bins=[0, 2, 4, 6, 8, 9]) - 1

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(prod_levels):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

colors = ['#0a0a0f', '#1e3a5f', '#2563eb', '#3b82f6', '#60a5fa', '#93c5fd']
cmap = LinearSegmentedColormap.from_list('productivity', colors, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#e2e8f0')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#e2e8f0')

ax.set_title('Daily Productivity Score (1-10)', fontsize=16, color='white', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#1e293b', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#1e293b', linewidth=0.5)

ax.tick_params(colors='#e2e8f0', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#334155') 
                   for c, l in zip(colors, ['1-2', '3-4', '5-6', '7-8', '9', '10'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6, 
          fontsize=8, facecolor='#1e293b', edgecolor='#334155', labelcolor='white')

avg = np.mean(productivity)
high_days = int(np.sum(productivity >= 8))
ax.annotate(f'Avg Score: {avg:.1f}/10 | {high_days} high productivity days', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#60a5fa', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support