Correlogram

Property Market Correlogram

Property characteristics correlogram by neighborhood type

Output
Property Market Correlogram
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(654)

n = 160
neighborhood = np.random.choice(['Downtown', 'Suburban', 'Rural'], n)
data = {
    'Price ($K)': np.where(neighborhood == 'Downtown', np.random.normal(800, 200, n),
                          np.where(neighborhood == 'Suburban', np.random.normal(450, 100, n), np.random.normal(250, 80, n))),
    'Size (sqft)': np.where(neighborhood == 'Downtown', np.random.normal(1200, 300, n),
                           np.where(neighborhood == 'Suburban', np.random.normal(2200, 500, n), np.random.normal(2800, 600, n))),
    'Age (yrs)': np.where(neighborhood == 'Downtown', np.random.normal(50, 20, n),
                         np.where(neighborhood == 'Suburban', np.random.normal(25, 10, n), np.random.normal(15, 8, n))),
    'Lot (acres)': np.where(neighborhood == 'Rural', np.random.normal(2, 1, n),
                           np.where(neighborhood == 'Suburban', np.random.normal(0.3, 0.1, n), np.random.normal(0.05, 0.02, n))),
    'Area': neighborhood
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})

palette = {'Downtown': '#C82909', 'Suburban': '#27D3F5', 'Rural': '#6CF527'}

g = sns.pairplot(
    df,
    hue='Area',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='hist',
    markers=['s', 'o', '^'],
    plot_kws={'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
    diag_kws={'alpha': 0.6, 'edgecolor': 'white', 'linewidth': 0.5}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Property Market Analysis', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support