KDE Plot

Rental Price Distribution KDE

Density distribution of monthly rental prices by city zone

Output
Rental Price Distribution KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(1010)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'

# Monthly rent ($)
downtown = np.random.lognormal(7.8, 0.3, 400)
midtown = np.random.lognormal(7.5, 0.35, 400)
suburbs = np.random.lognormal(7.2, 0.4, 400)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(1000, 5000, 500)

for data, color, label in [(downtown, '#C82909', 'Downtown'), 
                            (midtown, '#4927F5', 'Midtown'),
                            (suburbs, '#6CF527', 'Suburbs')]:
    data_clipped = data[(data > 1000) & (data < 5000)]
    kde = gaussian_kde(data_clipped)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.25, color=color)

ax.set_xlabel('Monthly Rent ($)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Rental Price Distribution by Zone', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.set_xlim(1000, 5000)

ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
    spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support