Ridgeline Plot

Response Time by API Endpoint

Latency distributions with cyberpunk neon aesthetic

Output
Response Time by API Endpoint
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(789)

endpoints = ['/users', '/products', '/orders', '/auth', '/search', '/analytics']
# Cyberpunk neon palette
colors = ['#F5276C', '#F54927', '#F5B027', '#27D3F5', '#6CF527', '#4927F5']

data = {
    '/users': np.random.lognormal(2.5, 0.5, 500),
    '/products': np.random.lognormal(3, 0.6, 500),
    '/orders': np.random.lognormal(3.5, 0.7, 500),
    '/auth': np.random.lognormal(2, 0.4, 500),
    '/search': np.random.lognormal(4, 0.8, 500),
    '/analytics': np.random.lognormal(4.5, 0.9, 500)
}

fig, ax = plt.subplots(figsize=(12, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')

overlap = 1.7
x_range = np.linspace(0, 300, 300)

for i, (endpoint, latency) in enumerate(data.items()):
    latency = np.clip(latency, 0, 300)
    kde = stats.gaussian_kde(latency, bw_method=0.3)
    y = kde(x_range) * 3.8
    baseline = i * overlap
    
    # Neon glow layers
    ax.plot(x_range, y + baseline, color=colors[i], linewidth=10, alpha=0.15)
    ax.plot(x_range, y + baseline, color=colors[i], linewidth=6, alpha=0.25)
    ax.plot(x_range, y + baseline, color=colors[i], linewidth=3, alpha=0.5)
    ax.fill_between(x_range, baseline, y + baseline, alpha=0.4, color=colors[i])
    ax.plot(x_range, y + baseline, color='white', linewidth=1.2, alpha=0.9)
    
    ax.text(-8, baseline + 0.15, endpoint, fontsize=10, color=colors[i],
            ha='right', va='bottom', fontweight='600', family='monospace')

ax.set_xlim(-50, 300)
ax.set_ylim(-0.3, len(endpoints) * overlap + 2)
ax.set_xlabel('Response Time (ms)', fontsize=12, color='#555555', fontweight='500')
ax.set_title('Response Time by API Endpoint', fontsize=16, color='white', fontweight='bold', pad=20)

ax.tick_params(axis='x', colors='#444444', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
for spine in ax.spines.values():
    spine.set_visible(False)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support