KDE Plot

Resting Heart Rate Distribution

KDE of resting heart rate with fitness level zones.

Output
Resting Heart Rate Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(51)

# Heart rate distribution
hr = np.random.normal(72, 12, 1000)
hr = hr[(hr > 40) & (hr < 110)]

kde = stats.gaussian_kde(hr)
x = np.linspace(40, 110, 500)
y = kde(x)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

# Gradient fill based on health zones
for i in range(len(x)-1):
    if x[i] < 60:
        color = '#27D3F5'  # Athletic - cyan
    elif x[i] < 70:
        color = '#6CF527'  # Excellent - lime
    elif x[i] < 80:
        color = '#27F5B0'  # Good - mint
    elif x[i] < 90:
        color = '#F5B027'  # Average - amber
    else:
        color = '#F5276C'  # High - coral
    ax.fill_between(x[i:i+2], y[i:i+2], alpha=0.6, color=color)

ax.plot(x, y, color='#4927F5', linewidth=3)
ax.plot(x, y, color='#4927F5', linewidth=8, alpha=0.2)

# Zone labels at top
zones = [(50, 'Athletic'), (65, 'Excellent'), (75, 'Good'), (85, 'Average'), (100, 'High')]
for pos, label in zones:
    ax.text(pos, max(y)*1.05, label, color='#e2e8f0', fontsize=9, ha='center', fontweight='bold')

ax.set_xlabel('Resting Heart Rate (BPM)', fontsize=12, color='white', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='white', fontweight='500')
ax.set_title('Resting Heart Rate Distribution', fontsize=16, color='white', fontweight='bold', pad=15)

ax.tick_params(colors='white', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#334155')
ax.grid(True, alpha=0.1, color='white')
ax.set_xlim(40, 110)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support