Stream Graph
Retail Channel Sales Stream
Stream graph showing retail sales distribution across different channels.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
COLORS = {
'layers': ['#3B82F6', '#10B981', '#F59E0B', '#EF4444', '#8B5CF6'],
'background': '#ffffff',
'text': '#1f2937',
'grid': '#e5e7eb',
}
np.random.seed(3434)
months = np.arange(0, 48)
online = 25 + 0.8 * months + 5 * np.sin(months * np.pi / 6) + np.random.normal(0, 2, 48)
physical = 50 - 0.3 * months + 8 * np.sin(months * np.pi / 6 + np.pi) + np.random.normal(0, 2, 48)
mobile_app = 10 + 0.5 * months + np.random.normal(0, 1, 48)
marketplace = 10 + 0.4 * months + np.random.normal(0, 1, 48)
social = 5 + 0.3 * months + np.random.normal(0, 0.5, 48)
data = [np.clip(d, 1, None) for d in [online, physical, mobile_app, marketplace, social]]
fig, ax = plt.subplots(figsize=(14, 6), facecolor=COLORS['background'])
ax.set_facecolor(COLORS['background'])
ax.stackplot(months, *data, colors=COLORS['layers'], alpha=0.85, baseline='sym',
labels=['Online Store', 'Physical Store', 'Mobile App', 'Marketplaces', 'Social Commerce'])
ax.axhline(0, color=COLORS['grid'], linewidth=0.5)
ax.set_xlim(0, 47)
ax.set_title('Retail Sales by Channel', color=COLORS['text'], fontsize=14, fontweight='bold', pad=15)
ax.set_xlabel('Month', color=COLORS['text'], fontsize=11)
ax.set_ylabel('Sales (%)', color=COLORS['text'], fontsize=11)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.12), frameon=False, fontsize=9, ncol=5)
for spine in ax.spines.values():
spine.set_color(COLORS['grid'])
ax.tick_params(colors=COLORS['text'], labelsize=9)
plt.tight_layout()
plt.subplots_adjust(bottom=0.18)
plt.show()
Library
Matplotlib
Category
Time Series
More Stream Graph examples
☕