Correlogram

Retail Customer Behavior Matrix

Marketing analytics correlogram of consumer behavior by segment

Output
Retail Customer Behavior Matrix
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(456)

n = 180
segments = np.random.choice(['Premium', 'Standard', 'Budget'], n)
data = {
    'Spend ($)': np.where(segments == 'Premium', np.random.normal(500, 100, n),
                         np.where(segments == 'Standard', np.random.normal(200, 50, n), np.random.normal(50, 20, n))),
    'Frequency': np.where(segments == 'Premium', np.random.normal(12, 3, n),
                         np.where(segments == 'Standard', np.random.normal(6, 2, n), np.random.normal(2, 1, n))),
    'Tenure (mo)': np.where(segments == 'Premium', np.random.normal(36, 12, n),
                           np.where(segments == 'Standard', np.random.normal(18, 8, n), np.random.normal(6, 3, n))),
    'NPS': np.where(segments == 'Premium', np.random.normal(65, 15, n),
                   np.where(segments == 'Standard', np.random.normal(40, 20, n), np.random.normal(20, 25, n))),
    'Segment': segments
}
df = pd.DataFrame(data)

sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})

palette = {'Premium': '#5314E6', 'Standard': '#27D3F5', 'Budget': '#F5B027'}

g = sns.pairplot(
    df,
    hue='Segment',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='kde',
    markers=['D', 'o', 's'],
    plot_kws={'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.6},
    diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)

g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#ffffff')
        for spine in ax.spines.values():
            spine.set_color('#dddddd')
        ax.tick_params(colors='#666666')
        ax.xaxis.label.set_color('#333333')
        ax.yaxis.label.set_color('#333333')

g.fig.suptitle('Customer Behavior Segmentation', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support