Linear Regression Plot

Revenue vs Marketing Spend Correlation

Business growth analysis showing marketing ROI

Output
Revenue vs Marketing Spend Correlation
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(401)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

# Generate correlated data
n = 80
marketing = np.random.uniform(10, 100, n)
revenue = 2.5 * marketing + np.random.normal(0, 20, n) + 50

df = pd.DataFrame({'Marketing Spend ($K)': marketing, 'Revenue ($K)': revenue})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Marketing Spend ($K)',
    y='Revenue ($K)',
    scatter_kws={'color': '#27D3F5', 'alpha': 0.7, 's': 60, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#F5276C', 'linewidth': 2.5, 'alpha': 0.9},
    ci=95,
    ax=ax
)

# Style confidence interval
for collection in ax.collections[1:]:
    collection.set_facecolor('#F5276C')
    collection.set_alpha(0.15)

corr = np.corrcoef(marketing, revenue)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#F5276C', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))

ax.set_xlabel('Marketing Spend ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Revenue ($K)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Revenue vs Marketing Spend', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support