Heatmap

Risk Assessment Heatmap

Light theme heatmap showing risk levels by category

Output
Risk Assessment Heatmap
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch

fig, ax = plt.subplots(figsize=(10, 9), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

impact = ['Negligible', 'Minor', 'Moderate', 'Major', 'Severe']
likelihood = ['Rare', 'Unlikely', 'Possible', 'Likely', 'Certain']
data = np.array([[1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], [4, 8, 12, 16, 20], [5, 10, 15, 20, 25]])

colors = ['#22c55e', '#84cc16', '#eab308', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('risk', colors, N=256)

cell_w, cell_h = 0.88, 0.88
for i in range(5):
    for j in range(5):
        val = data[i, j]
        rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
                               boxstyle="round,pad=0.02,rounding_size=0.12",
                               facecolor=cmap((val-1)/24), edgecolor='#e2e8f0', linewidth=1.5)
        ax.add_patch(rect)
        ax.text(j, i, str(val), ha='center', va='center', color='#1e293b', fontsize=12, fontweight='bold')

ax.set_xlim(-0.5, 4.5)
ax.set_ylim(-0.5, 4.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(5))
ax.set_yticks(range(5))
ax.set_xticklabels(likelihood, rotation=45, ha='right', color='#64748b', fontsize=9, fontweight='500')
ax.set_yticklabels(impact, color='#1e293b', fontsize=10, fontweight='500')

sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(1, 25))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Risk Score', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')

for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_xlabel('Likelihood', fontsize=12, color='#64748b', labelpad=10)
ax.set_ylabel('Impact', fontsize=12, color='#64748b', labelpad=10)
ax.set_title('Risk Assessment Matrix', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support