Clustermap
RNA-Seq Light Theme
Gene expression levels across tissue samples with neon colors on white background
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(42)
genes = [f'Gene_{i}' for i in range(1, 21)]
tissues = ['Brain', 'Heart', 'Liver', 'Kidney', 'Lung', 'Muscle', 'Skin', 'Blood']
data = np.random.randn(20, 8) * 2
data[:5, 0] += 4
data[5:10, 1:3] += 3
data[10:15, 3:5] += 3
data[15:, 5:] += 2
df = pd.DataFrame(data, index=genes, columns=tissues)
tissue_type = ['Neural', 'Cardiac', 'Metabolic', 'Excretory', 'Respiratory', 'Muscular', 'Epithelial', 'Immune']
palette = {'Neural': '#4927F5', 'Cardiac': '#F5276C', 'Metabolic': '#F5B027', 'Excretory': '#27D3F5',
'Respiratory': '#6CF527', 'Muscular': '#F54927', 'Epithelial': '#D3F527', 'Immune': '#F527B0'}
col_colors = pd.Series(tissue_type, index=tissues).map(palette)
# Neon colors on light background
neon_cmap = LinearSegmentedColormap.from_list('neon', ['#4927F5', '#f8fafc', '#F5B027', '#F5276C'])
g = sns.clustermap(df, cmap=neon_cmap, col_colors=col_colors,
method='ward', metric='euclidean',
linewidths=0.4, linecolor='#e5e7eb',
figsize=(9, 8), dendrogram_ratio=(0.12, 0.12),
cbar_pos=(0.01, 0.08, 0.008, 0.12))
g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)
g.fig.suptitle('RNA-Seq Tissue Expression', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕