3D Trisurf
Rosenbrock Optimization Trisurf
Rosenbrock banana function from unstructured sampling in lime-yellow gradient.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
# Scattered points in optimization region
np.random.seed(88)
n_points = 600
x = np.random.uniform(-2, 2, n_points)
y = np.random.uniform(-1, 3, n_points)
# Rosenbrock function (log scale for visualization)
z = np.log1p((1 - x)**2 + 100*(y - x**2)**2)
# Custom colormap
colors = ['#0a0a0f', '#1a2e05', '#6CF527', '#D3F527', '#fef08a']
cmap = LinearSegmentedColormap.from_list('lime_yellow', colors, N=256)
fig = plt.figure(figsize=(10, 8), facecolor='#0a0a0f')
ax = fig.add_subplot(111, projection='3d', facecolor='#0a0a0f')
surf = ax.plot_trisurf(x, y, z, cmap=cmap, alpha=0.9, linewidth=0.1, edgecolor='#ffffff08')
ax.set_xlabel('X', fontsize=10, color='#94a3b8', labelpad=10)
ax.set_ylabel('Y', fontsize=10, color='#94a3b8', labelpad=10)
ax.set_zlabel('log(f)', fontsize=10, color='#94a3b8', labelpad=10)
ax.set_title("Rosenbrock Optimization Trisurf", fontsize=14, color='white', fontweight='bold', pad=20)
ax.tick_params(colors='#64748b', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#1e293b')
ax.yaxis.pane.set_edgecolor('#1e293b')
ax.zaxis.pane.set_edgecolor('#1e293b')
ax.view_init(elev=30, azim=135)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
3D Charts
More 3D Trisurf examples
☕