KDE Plot
Salary Distribution by Department
KDE comparing salary distributions across different departments.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(53)
# Department salaries (in thousands)
engineering = np.random.normal(95, 20, 400)
marketing = np.random.normal(70, 15, 300)
sales = np.random.lognormal(4.1, 0.4, 350)
hr = np.random.normal(60, 12, 200)
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
x = np.linspace(20, 180, 500)
departments = [
(engineering, 'Engineering', '#27D3F5'),
(marketing, 'Marketing', '#F54927'),
(sales, 'Sales', '#6CF527'),
(hr, 'HR', '#F527B0'),
]
for data, label, color in departments:
kde = stats.gaussian_kde(data)
y = kde(x)
ax.fill_between(x, y, alpha=0.25, color=color)
ax.plot(x, y, color=color, linewidth=2.5, label=f'{label} (${np.mean(data):.0f}K)')
ax.set_xlabel('Annual Salary ($K)', fontsize=12, color='white', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='white', fontweight='500')
ax.set_title('Salary Distribution by Department', fontsize=16, color='white', fontweight='bold', pad=15)
ax.tick_params(colors='white', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#334155')
ax.legend(loc='upper right', facecolor='#1e293b', edgecolor='#334155', labelcolor='white')
ax.grid(True, alpha=0.1, color='white')
ax.set_xlim(20, 180)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕