Ridgeline Plot
Salary Distribution by Industry
Annual salary distributions across different industries
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
industries = ['Tech', 'Finance', 'Healthcare', 'Retail', 'Manufacturing']
colors = ['#F5276C', '#27D3F5', '#6CF527', '#F5B027', '#4927F5']
# Generate salary data (in thousands)
data = {
'Tech': np.random.normal(95, 25, 300),
'Finance': np.random.normal(85, 30, 300),
'Healthcare': np.random.normal(70, 20, 300),
'Retail': np.random.normal(45, 15, 300),
'Manufacturing': np.random.normal(55, 18, 300)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')
overlap = 2.5
x_range = np.linspace(0, 160, 300)
for i, (industry, salaries) in enumerate(data.items()):
kde = stats.gaussian_kde(salaries, bw_method=0.3)
y = kde(x_range) * 10
baseline = i * overlap
ax.fill_between(x_range, baseline, y + baseline,
alpha=0.7, color=colors[i], linewidth=0)
ax.plot(x_range, y + baseline, color=colors[i], linewidth=2)
ax.text(-5, baseline + 0.3, industry, fontsize=11, color='white',
ha='right', va='bottom', fontweight='500')
ax.set_xlim(-30, 160)
ax.set_ylim(-0.5, len(industries) * overlap + 1.5)
ax.set_xlabel('Annual Salary ($K)', fontsize=12, color='white', fontweight='500')
ax.set_title('Salary Distribution by Industry', fontsize=16, color='white',
fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#888888', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.spines['bottom'].set_color('#333333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕