Clustermap
Security Risk Light Theme
Attack vectors and vulnerability correlations with neon colors on white background
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(456)
threats = ['SQL Injection', 'XSS', 'CSRF', 'DDoS', 'Phishing',
'Malware', 'Ransomware', 'MitM', 'Brute Force', 'Zero-Day']
systems = ['Web App', 'API', 'Database', 'Network', 'Email', 'Endpoint', 'Cloud', 'IoT']
data = np.random.rand(10, 8) * 5
data[0, 2] = 9
data[1, 0] = 8
data[3, 3] = 9
data[6, 5] = 8
df = pd.DataFrame(data, index=threats, columns=systems)
# System criticality
criticality = ['High']*3 + ['Critical']*2 + ['Medium']*3
crit_palette = {'Critical': '#C82909', 'High': '#F5276C', 'Medium': '#F5B027'}
col_colors = pd.Series(criticality, index=systems).map(crit_palette)
# Neon threat colors on light
neon_cmap = LinearSegmentedColormap.from_list('threat', ['#f8fafc', '#4927F5', '#F5B027', '#F5276C', '#C82909'])
g = sns.clustermap(df, cmap=neon_cmap, vmin=0, vmax=10, col_colors=col_colors,
method='average', metric='euclidean',
linewidths=0.4, linecolor='#e5e7eb',
figsize=(9, 8), dendrogram_ratio=(0.12, 0.12),
cbar_pos=(0.01, 0.08, 0.008, 0.12),
annot=True, fmt='.1f', annot_kws={'size': 7, 'color': '#1f2937'})
g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)
g.fig.suptitle('Security Risk Assessment', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Clustermap examples
☕