3D Scatter
Server Cluster Health Dashboard
DevOps monitoring showing server CPU, memory, and network with health status.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(333)
# Server performance metrics
n_servers = 100
cpu_usage = np.random.beta(2, 5, n_servers) * 100
memory_usage = np.random.beta(3, 4, n_servers) * 100
network_io = np.random.exponential(500, n_servers)
# Health status
healthy = (cpu_usage < 80) & (memory_usage < 85)
warning = ~healthy & (cpu_usage < 95) & (memory_usage < 95)
colors = []
for h, w in zip(healthy, warning):
if h:
colors.append('#6CF527')
elif w:
colors.append('#F5B027')
else:
colors.append('#F5276C')
fig = plt.figure(figsize=(10, 8), facecolor='#ffffff')
ax = fig.add_subplot(111, projection='3d', facecolor='#ffffff')
ax.scatter(cpu_usage, memory_usage, network_io, c=colors, s=60,
alpha=0.7, edgecolors='#374151', linewidths=0.3)
ax.set_xlabel('CPU Usage (%)', color='#1f2937', fontsize=10)
ax.set_ylabel('Memory Usage (%)', color='#1f2937', fontsize=10)
ax.set_zlabel('Network I/O (MB/s)', color='#1f2937', fontsize=10)
ax.set_title('Server Cluster Health Dashboard', color='#1f2937', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#6b7280', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#e5e7eb')
ax.yaxis.pane.set_edgecolor('#e5e7eb')
ax.zaxis.pane.set_edgecolor('#e5e7eb')
ax.view_init(elev=20, azim=45)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
3D Charts
☕