KDE Plot

Server CPU Usage Distribution

KDE of CPU utilization patterns across server fleet.

Output
Server CPU Usage Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(59)

# CPU usage percentages (bimodal - idle vs busy)
idle = np.random.beta(2, 8, 400) * 100
active = np.random.beta(5, 3, 600) * 100
cpu = np.concatenate([idle, active])

kde = stats.gaussian_kde(cpu)
x = np.linspace(0, 100, 500)
y = kde(x)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

# Color by utilization level
for i in range(len(x)-1):
    if x[i] < 30:
        color = '#27D3F5'  # Low - cyan
    elif x[i] < 60:
        color = '#6CF527'  # Moderate - lime
    elif x[i] < 80:
        color = '#F5B027'  # High - amber
    else:
        color = '#F5276C'  # Critical - coral
    ax.fill_between(x[i:i+2], y[i:i+2], alpha=0.6, color=color)

ax.plot(x, y, color='#27D3F5', linewidth=3)
ax.plot(x, y, color='#27D3F5', linewidth=8, alpha=0.2)

# Threshold lines
ax.axvline(80, color='#F5276C', linestyle='--', linewidth=2, label='Critical (80%)')
ax.axvline(60, color='#F5B027', linestyle='--', linewidth=1.5, alpha=0.7, label='Warning (60%)')

ax.set_xlabel('CPU Usage (%)', fontsize=12, color='white', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='white', fontweight='500')
ax.set_title('Server CPU Utilization Distribution', fontsize=16, color='white', fontweight='bold', pad=15)

ax.tick_params(colors='white', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#334155')
ax.legend(loc='upper right', facecolor='#1e293b', edgecolor='#334155', labelcolor='white')
ax.grid(True, alpha=0.1, color='white')
ax.set_xlim(0, 100)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support