Ridgeline Plot
Server Latency by Data Center
Global infrastructure performance with neon cyber aesthetic
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(777)
centers = ['US-East', 'US-West', 'EU-West', 'Asia-Pacific', 'South America', 'Africa']
colors = ['#276CF5', '#4927F5', '#27D3F5', '#F5B027', '#6CF527', '#F5276C']
data = {
'US-East': np.random.lognormal(2, 0.4, 500),
'US-West': np.random.lognormal(2.2, 0.45, 500),
'EU-West': np.random.lognormal(2.5, 0.5, 500),
'Asia-Pacific': np.random.lognormal(3, 0.6, 500),
'South America': np.random.lognormal(3.2, 0.55, 500),
'Africa': np.random.lognormal(3.5, 0.7, 500)
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')
overlap = 1.7
x_range = np.linspace(0, 100, 300)
for i, (center, latency) in enumerate(data.items()):
latency = np.clip(latency, 0, 100)
kde = stats.gaussian_kde(latency, bw_method=0.3)
y = kde(x_range) * 4
baseline = i * overlap
for w, a in [(14, 0.08), (10, 0.12), (6, 0.22), (3, 0.45)]:
ax.plot(x_range, y + baseline, color=colors[i], linewidth=w, alpha=a)
ax.fill_between(x_range, baseline, y + baseline, alpha=0.45, color=colors[i])
ax.plot(x_range, y + baseline, color='white', linewidth=1.2, alpha=0.9)
ax.text(-3, baseline + 0.15, center, fontsize=10, color=colors[i],
ha='right', va='bottom', fontweight='600')
ax.set_xlim(-30, 100)
ax.set_ylim(-0.3, len(centers) * overlap + 2)
ax.set_xlabel('Latency (ms)', fontsize=12, color='#555555', fontweight='500')
ax.set_title('Server Latency by Data Center', fontsize=16, color='white', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#444444', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
for spine in ax.spines.values():
spine.set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕