3D Trisurf

Shubert Function Trisurf

Shubert function with 760 local minima for global optimization in violet-blue gradient.

Output
Shubert Function Trisurf
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

# Scattered sampling
np.random.seed(55)
n_points = 600
x = np.random.uniform(-5, 5, n_points)
y = np.random.uniform(-5, 5, n_points)

# Shubert function
sum1 = sum([i * np.cos((i+1)*x + i) for i in range(1, 6)])
sum2 = sum([i * np.cos((i+1)*y + i) for i in range(1, 6)])
z = sum1 * sum2
z = np.clip(z, -50, 50)

# Custom colormap
colors = ['#ffffff', '#ddd6fe', '#8b5cf6', '#276CF5', '#93c5fd']
cmap = LinearSegmentedColormap.from_list('violet_blue', colors, N=256)

fig = plt.figure(figsize=(10, 8), facecolor='#ffffff')
ax = fig.add_subplot(111, projection='3d', facecolor='#ffffff')

surf = ax.plot_trisurf(x, y, z, cmap=cmap, alpha=0.85, linewidth=0.1, edgecolor='#33333308')

ax.set_xlabel('X', fontsize=10, color='#374151', labelpad=10)
ax.set_ylabel('Y', fontsize=10, color='#374151', labelpad=10)
ax.set_zlabel('f(x,y)', fontsize=10, color='#374151', labelpad=10)
ax.set_title("Shubert Function Trisurf", fontsize=14, color='#1f2937', fontweight='bold', pad=20)

ax.tick_params(colors='#6b7280', labelsize=8)
ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#e5e7eb')
ax.yaxis.pane.set_edgecolor('#e5e7eb')
ax.zaxis.pane.set_edgecolor('#e5e7eb')

ax.view_init(elev=30, azim=60)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

3D Charts

Did this help you?

Support PyLucid to keep it free & growing

Support