Scatter Plot

Size-Encoded Scatter

Bubble chart with size representing a third dimension and labeled top values.

Output
Size-Encoded Scatter
Python
import matplotlib.pyplot as plt
import numpy as np

# === STYLE CONFIG ===
COLORS = {
    'primary': '#8B5CF6',
    'background': '#FFFFFF',
    'text': '#1E293B',
    'text_muted': '#64748B',
    'grid': '#F1F5F9',
}

# === DATA ===
np.random.seed(42)
x = np.random.uniform(1, 9, 20)
y = np.random.uniform(1, 9, 20)
values = np.random.uniform(10, 100, 20)
sizes = values * 10

# === FIGURE ===
fig, ax = plt.subplots(figsize=(10, 6), dpi=100)
ax.set_facecolor(COLORS['background'])
fig.patch.set_facecolor(COLORS['background'])

# === PLOT ===
# Glow layers
for alpha, scale in [(0.03, 2.0), (0.06, 1.5)]:
    ax.scatter(x, y, s=sizes * scale, c=COLORS['primary'], alpha=alpha, zorder=1)

# Main points
scatter = ax.scatter(x, y, s=sizes, c=COLORS['primary'], alpha=0.7,
                     edgecolors='white', linewidths=2, zorder=3)

# Value labels for top 5
top_idx = np.argsort(values)[-5:]
for i in top_idx:
    ax.annotate(f'{values[i]:.0f}', (x[i], y[i]), 
                ha='center', va='center', fontsize=8, 
                color='white', fontweight='bold', zorder=4)

# === STYLING ===
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color(COLORS['grid'])
ax.spines['bottom'].set_color(COLORS['grid'])

ax.yaxis.grid(True, color=COLORS['grid'], linewidth=1)
ax.set_axisbelow(True)
ax.tick_params(axis='both', colors=COLORS['text_muted'], labelsize=9, length=0, pad=8)

ax.set_xlim(0, 10)
ax.set_ylim(0, 10)
ax.set_xlabel('Feature A', fontsize=10, color=COLORS['text'], labelpad=10)
ax.set_ylabel('Feature B', fontsize=10, color=COLORS['text'], labelpad=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support