Linear Regression Plot

Sleep Hours vs Productivity Score

Health and workplace performance analysis

Output
Sleep Hours vs Productivity Score
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(408)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

n = 70
sleep = np.random.uniform(4, 10, n)
productivity = 30 + 8 * sleep + np.random.normal(0, 8, n)
productivity = np.clip(productivity, 0, 100)

df = pd.DataFrame({'Sleep Hours': sleep, 'Productivity Score': productivity})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Sleep Hours',
    y='Productivity Score',
    scatter_kws={'color': '#276CF5', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#F5B027', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#F5B027')
    collection.set_alpha(0.15)

ax.axvspan(7, 9, alpha=0.1, color='#22c55e')
ax.text(8, 95, 'Optimal', color='#22c55e', fontsize=9, ha='center')

corr = np.corrcoef(sleep, productivity)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#F5B027', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))

ax.set_xlabel('Sleep Hours', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Productivity Score', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Sleep vs Productivity', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support