ANOVA Violin Plot
Sleep Quality by Age Group ANOVA
Analyzing sleep efficiency distributions across different age demographics.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
np.random.seed(1717)
# Sleep efficiency percentage
young_adults = np.random.normal(88, 6, 100)
middle_age = np.random.normal(82, 8, 100)
older_adults = np.random.normal(75, 10, 100)
seniors = np.random.normal(68, 12, 100)
# Clip to valid percentages
young_adults = np.clip(young_adults, 50, 100)
middle_age = np.clip(middle_age, 45, 100)
older_adults = np.clip(older_adults, 40, 100)
seniors = np.clip(seniors, 35, 100)
F_stat, p_value = stats.f_oneway(young_adults, middle_age, older_adults, seniors)
fig, ax = plt.subplots(figsize=(12, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
colors = ['#6CF527', '#27D3F5', '#F5B027', '#F5276C']
parts = ax.violinplot([young_adults, middle_age, older_adults, seniors],
positions=[1, 2, 3, 4], showmeans=True, showmedians=True, widths=0.7)
for i, pc in enumerate(parts['bodies']):
pc.set_facecolor(colors[i])
pc.set_alpha(0.6)
pc.set_edgecolor(colors[i])
pc.set_linewidth(2)
parts['cmeans'].set_color('#5314E6')
parts['cmeans'].set_linewidth(2.5)
parts['cmedians'].set_color('#1f2937')
for partname in ['cbars', 'cmins', 'cmaxes']:
parts[partname].set_color('#9ca3af')
# Sleep thresholds
ax.axhline(y=85, color='#22c55e', linestyle='--', alpha=0.7, linewidth=1.5)
ax.axhline(y=70, color='#f97316', linestyle='--', alpha=0.7, linewidth=1.5)
ax.text(4.45, 85, 'Good', fontsize=8, color='#22c55e', va='center')
ax.text(4.45, 70, 'Fair', fontsize=8, color='#f97316', va='center')
labels = ['18-30y', '31-50y', '51-65y', '65+y']
# REM sleep at bottom
rem_pct = ['25%', '22%', '18%', '15%']
means = [young_adults.mean(), middle_age.mean(), older_adults.mean(), seniors.mean()]
for i, (rem, mean, color) in enumerate(zip(rem_pct, means, colors)):
ax.text(i+1, 32, f'REM:{rem} | μ={mean:.0f}%', ha='center', fontsize=8, color=color)
# Stats at top
stats_text = f"ANOVA: F={F_stat:.2f}, p={p_value:.2e} | Trend: Decline with age"
bbox = dict(boxstyle="round,pad=0.3", facecolor='#f0fdf4', edgecolor='#6CF527', lw=2)
ax.text(0.5, 1.02, stats_text, transform=ax.transAxes, fontsize=10, color='#1f2937',
ha='center', va='bottom', fontfamily='monospace', bbox=bbox)
ax.set_xticks([1, 2, 3, 4])
ax.set_xticklabels(labels, fontsize=11, color='#1f2937')
ax.set_ylabel('Sleep Efficiency (%)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Sleep Quality Across Age Groups\nPolysomnography Study (N=400)',
fontsize=14, color='#1f2937', fontweight='bold', pad=25)
ax.tick_params(colors='#374151')
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
ax.yaxis.grid(True, color='#f3f4f6', linewidth=0.8)
ax.set_axisbelow(True)
ax.set_ylim(28, 105)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More ANOVA Violin Plot examples
☕