Ridgeline Plot
Social Media Engagement Rate
Platform metrics with vibrant brand-inspired neons
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(999)
platforms = ['TikTok', 'Instagram', 'YouTube', 'Twitter', 'LinkedIn', 'Facebook']
colors = ['#F5276C', '#F54927', '#F5276C', '#27D3F5', '#276CF5', '#4927F5']
data = {
'TikTok': np.random.beta(3, 12, 500) * 20,
'Instagram': np.random.beta(2.5, 15, 500) * 15,
'YouTube': np.random.beta(2, 18, 500) * 12,
'Twitter': np.random.beta(1.5, 20, 500) * 10,
'LinkedIn': np.random.beta(2, 25, 500) * 8,
'Facebook': np.random.beta(1.2, 30, 500) * 6
}
fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
overlap = 1.6
x_range = np.linspace(0, 12, 300)
for i, (platform, rate) in enumerate(data.items()):
kde = stats.gaussian_kde(rate, bw_method=0.35)
y = kde(x_range) * 3.5
baseline = i * overlap
ax.fill_between(x_range, baseline, y + baseline, alpha=0.7, color=colors[i])
ax.plot(x_range, y + baseline, color=colors[i], linewidth=2.5)
ax.text(-0.3, baseline + 0.12, platform, fontsize=10, color='#1f2937',
ha='right', va='bottom', fontweight='600')
ax.set_xlim(-2.5, 12)
ax.set_ylim(-0.3, len(platforms) * overlap + 1.8)
ax.set_xlabel('Engagement Rate (%)', fontsize=12, color='#374151', fontweight='500')
ax.set_title('Social Media Engagement Rate', fontsize=16, color='#1f2937', fontweight='bold', pad=20)
ax.tick_params(axis='x', colors='#374151', labelsize=10)
ax.tick_params(axis='y', left=False, labelleft=False)
ax.spines['bottom'].set_color('#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_visible(False)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕