Correlogram
Social Network Metrics
User engagement correlogram across platform types
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(333)
n = 170
platforms = np.random.choice(['Professional', 'Social', 'Content'], n)
data = {
'Followers (K)': np.where(platforms == 'Content', np.random.lognormal(3, 1, n),
np.where(platforms == 'Social', np.random.lognormal(2.5, 1.2, n), np.random.lognormal(1.5, 0.8, n))),
'Posts/Day': np.where(platforms == 'Content', np.random.normal(2, 0.8, n),
np.where(platforms == 'Social', np.random.normal(5, 2, n), np.random.normal(0.5, 0.2, n))),
'Engagement (%)': np.where(platforms == 'Professional', np.random.normal(3, 1, n),
np.where(platforms == 'Social', np.random.normal(5, 2, n), np.random.normal(8, 3, n))),
'Reach (K)': np.random.lognormal(2, 1, n),
'Platform': platforms
}
df = pd.DataFrame(data)
plt.style.use('dark_background')
sns.set_style("darkgrid", {'axes.facecolor': '#0a0a0f', 'figure.facecolor': '#0a0a0f', 'grid.color': '#333333'})
palette = {'Professional': '#276CF5', 'Social': '#F527B0', 'Content': '#F5D327'}
g = sns.pairplot(
df,
hue='Platform',
palette=palette,
height=2,
kind='scatter',
diag_kind='kde',
markers=['s', 'o', '^'],
plot_kws={'alpha': 0.7, 's': 50, 'edgecolor': 'white', 'linewidths': 0.4},
diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)
g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#0a0a0f')
for spine in ax.spines.values():
spine.set_color('#333333')
ax.tick_params(colors='#888888')
ax.xaxis.label.set_color('white')
ax.yaxis.label.set_color('white')
g.fig.suptitle('Platform Engagement Analysis', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.setp(g._legend.get_title(), color='white')
plt.setp(g._legend.get_texts(), color='white')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕