2D Histogram
Song Tempo vs Energy
2D histogram of music tracks tempo versus energy level analysis.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
np.random.seed(42)
# Music features
tempo = np.concatenate([
np.random.normal(80, 15, 1500), # Slow songs
np.random.normal(120, 20, 3000), # Pop/rock
np.random.normal(160, 15, 1500) # Electronic/dance
])
energy = 0.2 + tempo/200 * 0.5 + np.random.beta(2, 2, len(tempo)) * 0.3
energy = np.clip(energy, 0, 1)
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')
# Custom colormap: pink to yellow_lime
colors = ['#020B14', '#2d0d2d', '#F527B0', '#D3F527']
cmap = LinearSegmentedColormap.from_list('pink_lime', colors, N=256)
h = ax.hist2d(tempo, energy, bins=45, cmap=cmap, cmin=1)
cbar = plt.colorbar(h[3], ax=ax, pad=0.02)
cbar.set_label('Tracks', color='white', fontsize=11)
cbar.ax.yaxis.set_tick_params(color='white')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')
ax.set_xlabel('Tempo (BPM)', fontsize=11, color='white', fontweight='500')
ax.set_ylabel('Energy', fontsize=11, color='white', fontweight='500')
ax.set_title('Song Tempo vs Energy', fontsize=14, color='white', fontweight='bold', pad=15)
ax.tick_params(colors='white', labelsize=9)
for spine in ax.spines.values():
spine.set_color('#333333')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More 2D Histogram examples
☕