Clustermap

Sports Team Statistics

Player performance metrics clustered by playing style

Output
Sports Team Statistics
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(666)

stats = ['Points', 'Assists', 'Rebounds', 'Steals', 'Blocks',
         'FG%', '3PT%', 'FT%', 'Minutes', 'Turnovers']
players = ['LeBron', 'Curry', 'Durant', 'Giannis', 'Jokic', 'Embiid',
           'Tatum', 'Doncic', 'Morant', 'Edwards', 'Booker', 'Mitchell']

data = np.random.rand(10, 12) * 15 + 10
data[0, :4] += 15
data[1, [1, 7]] += 10
data[2, 3:6] += 8
data[4, 3:6] += 6

df = pd.DataFrame(data, index=stats, columns=players)

styles = ['All-around']*2 + ['Scorer']*2 + ['Big']*2 + ['Two-way']*3 + ['Athletic']*3
style_palette = {'All-around': '#6366f1', 'Scorer': '#ef4444', 'Big': '#f59e0b', 
                 'Two-way': '#22c55e', 'Athletic': '#ec4899'}
col_colors = pd.Series(styles, index=players).map(style_palette)

light_cmap = LinearSegmentedColormap.from_list('sports', ['#f8fafc', '#bfdbfe', '#6366f1', '#312e81'])

g = sns.clustermap(df, cmap=light_cmap, col_colors=col_colors,
                   method='average', metric='euclidean', standard_scale=0,
                   linewidths=0.5, linecolor='#e5e7eb',
                   figsize=(10, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12))

g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)

g.fig.suptitle('NBA Player Statistics', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support