Radar Chart
Sportswear Brand Perception
Marketing brand perception analysis for sportswear companies.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
# Brand perception metrics
categories = ['Quality', 'Innovation', 'Trust', 'Value', 'Sustainability', 'Service']
brand_nike = [92, 88, 85, 72, 78, 80]
brand_adidas = [88, 82, 82, 80, 85, 78]
brand_ua = [80, 75, 78, 85, 72, 82]
N = len(categories)
angles = np.linspace(0, 2 * np.pi, N, endpoint=False).tolist()
angles += angles[:1]
brand_nike += brand_nike[:1]
brand_adidas += brand_adidas[:1]
brand_ua += brand_ua[:1]
fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
ax.plot(angles, brand_nike, 'o-', linewidth=2.5, color='#F54927', label='Nike', markersize=7)
ax.fill(angles, brand_nike, alpha=0.2, color='#F54927')
ax.plot(angles, brand_adidas, 's-', linewidth=2.5, color='#276CF5', label='Adidas', markersize=7)
ax.fill(angles, brand_adidas, alpha=0.2, color='#276CF5')
ax.plot(angles, brand_ua, '^-', linewidth=2.5, color='#6CF527', label='Under Armour', markersize=7)
ax.fill(angles, brand_ua, alpha=0.2, color='#6CF527')
ax.set_xticks(angles[:-1])
ax.set_xticklabels(categories, fontsize=11, color='#374151', fontweight='500')
ax.set_ylim(0, 100)
ax.set_yticks([25, 50, 75, 100])
ax.set_yticklabels(['25', '50', '75', '100'], fontsize=9, color='#6b7280')
ax.yaxis.grid(True, color='#e5e7eb', linestyle='-', linewidth=0.8)
ax.xaxis.grid(True, color='#e5e7eb', linestyle='-', linewidth=0.8)
ax.legend(loc='upper right', bbox_to_anchor=(1.25, 1.1), fontsize=10,
facecolor='#ffffff', edgecolor='#e5e7eb')
plt.title('Sportswear Brand Perception', fontsize=16, color='#1f2937',
fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Polar Charts
☕