Heatmap

Sprint Velocity Heatmap

Dark theme heatmap showing team sprint velocities

Output
Sprint Velocity Heatmap
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch

fig, ax = plt.subplots(figsize=(12, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

np.random.seed(42)
teams = ['Alpha', 'Beta', 'Gamma', 'Delta', 'Epsilon']
sprints = [f'S{i+1}' for i in range(10)]
data = np.random.randint(20, 60, (len(teams), len(sprints)))

colors = ['#1e293b', '#134e4a', '#14b8a6', '#2dd4bf', '#99f6e4']
cmap = LinearSegmentedColormap.from_list('modern', colors, N=256)

cell_w, cell_h = 0.88, 0.82
for i in range(len(teams)):
    for j in range(len(sprints)):
        val = data[i, j]
        rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
                               boxstyle="round,pad=0.02,rounding_size=0.12",
                               facecolor=cmap((val - 0) / (60 - 0)), edgecolor='#e2e8f0', linewidth=1.5)
        ax.add_patch(rect)
        ax.text(j, i, f'{val}', ha='center', va='center', color='#1e293b', fontsize=10, fontweight='bold')

ax.set_xlim(-0.5, len(sprints)-0.5)
ax.set_ylim(-0.5, len(teams)-0.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(len(sprints)))
ax.set_yticks(range(len(teams)))
ax.set_xticklabels(sprints, color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(teams, color='#1e293b', fontsize=11, fontweight='500')

sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(0, 60))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Story Points', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')

for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Team Sprint Velocity', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support