Correlogram

Stellar Classification Features

Astrophysics correlogram of stellar properties by spectral class

Output
Stellar Classification Features
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np

np.random.seed(987)

n = 160
spectral = np.random.choice(['O/B', 'F/G', 'K/M'], n)
data = {
    'Temp (K)': np.where(spectral == 'O/B', np.random.normal(25000, 8000, n),
                        np.where(spectral == 'F/G', np.random.normal(6000, 800, n), np.random.normal(4000, 500, n))),
    'Luminosity': np.where(spectral == 'O/B', np.random.lognormal(4, 1, n),
                          np.where(spectral == 'F/G', np.random.lognormal(0, 0.5, n), np.random.lognormal(-1, 0.4, n))),
    'Mass (M☉)': np.where(spectral == 'O/B', np.random.normal(15, 5, n),
                         np.where(spectral == 'F/G', np.random.normal(1, 0.2, n), np.random.normal(0.5, 0.15, n))),
    'Radius (R☉)': np.where(spectral == 'O/B', np.random.normal(8, 3, n),
                           np.where(spectral == 'F/G', np.random.normal(1, 0.2, n), np.random.normal(0.6, 0.1, n))),
    'Class': spectral
}
df = pd.DataFrame(data)

plt.style.use('dark_background')
sns.set_style("darkgrid", {'axes.facecolor': '#0a0a0f', 'figure.facecolor': '#0a0a0f', 'grid.color': '#333333'})

palette = {'O/B': '#27D3F5', 'F/G': '#F5D327', 'K/M': '#C82909'}

g = sns.pairplot(
    df,
    hue='Class',
    palette=palette,
    height=2,
    kind='scatter',
    diag_kind='kde',
    markers=['*', 'o', 's'],
    plot_kws={'alpha': 0.75, 's': 60, 'edgecolor': 'white', 'linewidths': 0.5},
    diag_kws={'alpha': 0.5, 'linewidth': 2.5, 'fill': True}
)

g.fig.set_facecolor('#0a0a0f')
for ax in g.axes.flat:
    if ax:
        ax.set_facecolor('#0a0a0f')
        for spine in ax.spines.values():
            spine.set_color('#333333')
        ax.tick_params(colors='#888888')
        ax.xaxis.label.set_color('white')
        ax.yaxis.label.set_color('white')

g.fig.suptitle('Stellar Properties by Spectral Class', fontsize=14, fontweight='bold', color='white', y=1.02)
plt.setp(g._legend.get_title(), color='white')
plt.setp(g._legend.get_texts(), color='white')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support