Heatmap
Stock Sector Heatmap
Light theme heatmap showing stock performance by sector
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.patches import FancyBboxPatch
fig, ax = plt.subplots(figsize=(14, 8), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
np.random.seed(42)
sectors = ['Tech', 'Finance', 'Healthcare', 'Energy', 'Consumer', 'Industrial']
periods = ['1D', '1W', '1M', '3M', '6M', '1Y']
data = np.random.uniform(-15, 20, (len(sectors), len(periods)))
colors = ['#ef4444', '#fca5a5', '#334155', '#86efac', '#22c55e']
cmap = LinearSegmentedColormap.from_list('stock', colors, N=256)
cell_w, cell_h = 0.88, 0.82
for i in range(len(sectors)):
for j in range(len(periods)):
val = data[i, j]
rect = FancyBboxPatch((j - cell_w/2, i - cell_h/2), cell_w, cell_h,
boxstyle="round,pad=0.02,rounding_size=0.12",
facecolor=cmap((val+20)/45), edgecolor='#e2e8f0', linewidth=1.5)
ax.add_patch(rect)
sign = '+' if val > 0 else ''
ax.text(j, i, f'{sign}{val:.1f}%', ha='center', va='center', color='#1e293b', fontsize=9, fontweight='bold')
ax.set_xlim(-0.5, len(periods)-0.5)
ax.set_ylim(-0.5, len(sectors)-0.5)
ax.set_aspect('equal')
ax.invert_yaxis()
ax.set_xticks(range(len(periods)))
ax.set_yticks(range(len(sectors)))
ax.set_xticklabels(periods, color='#64748b', fontsize=10, fontweight='500')
ax.set_yticklabels(sectors, color='#1e293b', fontsize=10, fontweight='500')
sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(-20, 25))
cbar = plt.colorbar(sm, ax=ax, shrink=0.8, pad=0.02)
cbar.set_label('Return %', color='#1e293b', fontsize=11)
cbar.outline.set_edgecolor('#e2e8f0')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='#64748b')
for spine in ax.spines.values(): spine.set_visible(False)
ax.tick_params(length=0)
ax.set_title('Stock Sector Performance', fontsize=18, color='#1e293b', fontweight='bold', pad=20)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Heatmaps & Density
More Heatmap examples
☕