Calendar Heatmap

Stock Trading Calendar

Daily trading activity tracked in neon mint gradient for investors.

Output
Stock Trading Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(136)

days = 365
trades = np.zeros(days)
for i in range(days):
    if i % 7 < 5:
        trades[i] = np.random.poisson(3)
trades = np.clip(trades, 0, 15)

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(trades):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# CLAUDE.md Neon Mint palette
colors_neon = ['#ffffff', '#e0fcf0', '#7df5cd', '#27F5B0']
cmap = LinearSegmentedColormap.from_list('neon_mint', colors_neon, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=15)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#374151')

ax.set_title('Stock Trading - Trades Per Day', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)

ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db') 
                   for c, l in zip(colors_neon, ['0', '1-4', '5-10', '11+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=4, 
          fontsize=8, facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151', title='Trades',
          title_fontsize=9)

total = int(np.sum(trades))
ax.annotate(f'{total} trades executed', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#27F5B0', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support