Calendar Heatmap
Stock Trading Calendar
Daily trading activity tracked in neon mint gradient for investors.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches
np.random.seed(136)
days = 365
trades = np.zeros(days)
for i in range(days):
if i % 7 < 5:
trades[i] = np.random.poisson(3)
trades = np.clip(trades, 0, 15)
weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(trades):
week = i // 7
day = i % 7
if week < weeks:
data[day, week] = val
# CLAUDE.md Neon Mint palette
colors_neon = ['#ffffff', '#e0fcf0', '#7df5cd', '#27F5B0']
cmap = LinearSegmentedColormap.from_list('neon_mint', colors_neon, N=256)
fig, ax = plt.subplots(figsize=(16, 4), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=15)
ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#374151')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''],
fontsize=9, color='#374151')
ax.set_title('Stock Trading - Trades Per Day', fontsize=16, color='#1f2937', fontweight='bold', pad=15)
for i in range(8):
ax.axhline(y=i-0.5, color='#e5e7eb', linewidth=0.5)
for i in range(weeks+1):
ax.axvline(x=i-0.5, color='#e5e7eb', linewidth=0.5)
ax.tick_params(colors='#374151', length=0)
for spine in ax.spines.values():
spine.set_visible(False)
legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#d1d5db')
for c, l in zip(colors_neon, ['0', '1-4', '5-10', '11+'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=4,
fontsize=8, facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151', title='Trades',
title_fontsize=9)
total = int(np.sum(trades))
ax.annotate(f'{total} trades executed', xy=(0.98, 1.1), xycoords='axes fraction',
fontsize=11, color='#27F5B0', ha='right', fontweight='bold')
plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library
Matplotlib
Category
Time Series
More Calendar Heatmap examples
☕