3D Bar Chart

Stock Trading Volume

3D bar chart of trading volume by sector and day of week

Output
Stock Trading Volume
Python
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(12, 8), facecolor='white')
ax = fig.add_subplot(111, projection='3d')
ax.set_facecolor('white')

# Data: 5 days, 6 sectors
days = 5
sectors = 6
xpos = np.arange(days)
ypos = np.arange(sectors)
xpos, ypos = np.meshgrid(xpos, ypos)
xpos = xpos.flatten()
ypos = ypos.flatten()
zpos = np.zeros_like(xpos)

dx = dy = 0.65
np.random.seed(456)
dz = np.random.randint(50, 200, size=30)

# Purple gradient
colors = plt.cm.colors.LinearSegmentedColormap.from_list('', ['#276CF5', '#F527B0'])
bar_colors = [colors(v/max(dz)) for v in dz]

ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color=bar_colors, alpha=0.9, edgecolor='#000000', linewidth=0.3)

ax.set_xlabel('Day', fontsize=11, color='#1f2937', labelpad=10)
ax.set_ylabel('Sector', fontsize=11, color='#1f2937', labelpad=10)
ax.set_zlabel('Volume (M)', fontsize=11, color='#1f2937', labelpad=10)
ax.set_title('Stock Trading Volume by Sector', fontsize=14, color='#1f2937', fontweight='bold', pad=20)

ax.set_xticks(range(5))
ax.set_xticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri'])
ax.set_yticks(range(6))
ax.set_yticklabels(['Tech', 'Finance', 'Health', 'Energy', 'Retail', 'Industry'], fontsize=8)
ax.tick_params(colors='#000000', labelsize=9)

ax.xaxis.pane.fill = False
ax.yaxis.pane.fill = False
ax.zaxis.pane.fill = False
ax.xaxis.pane.set_edgecolor('#000000')
ax.yaxis.pane.set_edgecolor('#000000')
ax.zaxis.pane.set_edgecolor('#000000')
ax.grid(True, alpha=0.5, linewidth=0.5)
ax.xaxis._axinfo['grid']['color'] = '#000000'
ax.yaxis._axinfo['grid']['color'] = '#000000'
ax.zaxis._axinfo['grid']['color'] = '#000000'
ax.xaxis._axinfo['tick']['color'] = '#000000'
ax.yaxis._axinfo['tick']['color'] = '#000000'
ax.zaxis._axinfo['tick']['color'] = '#000000'


ax.xaxis.line.set_color('#000000')
ax.yaxis.line.set_color('#000000')
ax.zaxis.line.set_color('#000000')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

3D Charts

Did this help you?

Support PyLucid to keep it free & growing

Support