Clustermap

Student Performance Matrix

Academic performance across subjects with student clustering

Output
Student Performance Matrix
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(444)

subjects = ['Math', 'Physics', 'Chemistry', 'Biology', 'English', 
            'History', 'Geography', 'Art', 'Music', 'PE']
students = [f'Student_{i}' for i in range(1, 16)]

data = np.random.rand(10, 15) * 40 + 50
data[:4, :5] += 20
data[4:7, 5:10] += 15
data[7:9, 10:] += 25

df = pd.DataFrame(data, index=subjects, columns=students)

types = ['STEM']*5 + ['Humanities']*5 + ['Arts']*5
type_palette = {'STEM': '#3b82f6', 'Humanities': '#8b5cf6', 'Arts': '#ec4899'}
col_colors = pd.Series(types, index=students).map(type_palette)

light_cmap = LinearSegmentedColormap.from_list('grades', ['#fef2f2', '#fef9c3', '#dcfce7', '#22c55e'])

g = sns.clustermap(df, cmap=light_cmap, vmin=40, vmax=100, col_colors=col_colors,
                   method='ward', metric='euclidean',
                   linewidths=0.5, linecolor='#e5e7eb',
                   figsize=(10, 8), dendrogram_ratio=(0.12, 0.12),
                   cbar_pos=(0.01, 0.08, 0.008, 0.12))

g.fig.patch.set_facecolor('#ffffff')
g.ax_heatmap.set_facecolor('#ffffff')
g.ax_heatmap.tick_params(colors='#1f2937', labelsize=8)
g.ax_row_dendrogram.set_facecolor('#ffffff')
g.ax_col_dendrogram.set_facecolor('#ffffff')
g.cax.tick_params(colors='#1f2937', labelsize=7)

g.fig.suptitle('Student Academic Performance', color='#1f2937', fontsize=13, fontweight='bold', y=1.02)
plt.show()
Library

Matplotlib

Category

Heatmaps & Density

Did this help you?

Support PyLucid to keep it free & growing

Support