KDE Plot
Student Test Score Distribution KDE
Density distribution of standardized test scores by school type
Output
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
np.random.seed(555)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'
# Test scores
public = np.random.normal(72, 12, 500)
private = np.random.normal(78, 10, 500)
charter = np.random.normal(75, 11, 500)
fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)
x_range = np.linspace(30, 100, 500)
for data, color, label in [(public, '#4927F5', 'Public'),
(private, '#F5276C', 'Private'),
(charter, '#27D3F5', 'Charter')]:
kde = gaussian_kde(data)
density = kde(x_range)
ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
ax.fill_between(x_range, density, alpha=0.25, color=color)
ax.set_xlabel('Test Score', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Student Test Score Distribution by School Type', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)
ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕