KDE Plot

Student Test Score Distribution KDE

Density distribution of standardized test scores by school type

Output
Student Test Score Distribution KDE
Python
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde

np.random.seed(555)
BG_COLOR = '#ffffff'
TEXT_COLOR = '#1f2937'
GRID_COLOR = '#e5e7eb'

# Test scores
public = np.random.normal(72, 12, 500)
private = np.random.normal(78, 10, 500)
charter = np.random.normal(75, 11, 500)

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

x_range = np.linspace(30, 100, 500)

for data, color, label in [(public, '#4927F5', 'Public'), 
                            (private, '#F5276C', 'Private'),
                            (charter, '#27D3F5', 'Charter')]:
    kde = gaussian_kde(data)
    density = kde(x_range)
    ax.plot(x_range, density, color=color, linewidth=2.5, label=label)
    ax.fill_between(x_range, density, alpha=0.25, color=color)

ax.set_xlabel('Test Score', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Density', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Student Test Score Distribution by School Type', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors=TEXT_COLOR, labelsize=10)
for spine in ax.spines.values():
    spine.set_color(GRID_COLOR)
ax.yaxis.grid(True, color=GRID_COLOR, linewidth=0.5, alpha=0.7)
ax.legend(facecolor=BG_COLOR, edgecolor=GRID_COLOR, labelcolor=TEXT_COLOR, fontsize=10)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support