Linear Regression Plot

Study Hours vs Exam Score

Educational performance correlation analysis

Output
Study Hours vs Exam Score
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(403)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

n = 90
hours = np.random.uniform(1, 12, n)
score = 45 + 4.5 * hours + np.random.normal(0, 8, n)
score = np.clip(score, 0, 100)

df = pd.DataFrame({'Study Hours': hours, 'Exam Score': score})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Study Hours',
    y='Exam Score',
    scatter_kws={'color': '#4927F5', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#27F5B0', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#27F5B0')
    collection.set_alpha(0.15)

ax.axhline(70, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(11.5, 71, 'Pass', color='#22c55e', fontsize=9)

corr = np.corrcoef(hours, score)[0, 1]
ax.text(0.05, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#27F5B0', fontweight='bold', va='top',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))

ax.set_xlabel('Study Hours', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Exam Score', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Study Time vs Performance', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support