ANOVA Violin Plot
Surgical Recovery Time ANOVA
Comparing patient recovery durations across different surgical techniques.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
np.random.seed(1212)
# Recovery time in days
open_surgery = np.random.lognormal(2.8, 0.4, 100)
laparoscopic = np.random.lognormal(2.3, 0.35, 100)
robotic = np.random.lognormal(2.1, 0.3, 100)
# Clip for realistic values
open_surgery = np.clip(open_surgery, 5, 60)
laparoscopic = np.clip(laparoscopic, 3, 40)
robotic = np.clip(robotic, 2, 30)
F_stat, p_value = stats.f_oneway(open_surgery, laparoscopic, robotic)
fig, ax = plt.subplots(figsize=(11, 7), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
colors = ['#C82909', '#F5B027', '#27F5B0']
parts = ax.violinplot([open_surgery, laparoscopic, robotic],
positions=[1, 2, 3], showmeans=True, showmedians=True, widths=0.7)
for i, pc in enumerate(parts['bodies']):
pc.set_facecolor(colors[i])
pc.set_alpha(0.6)
pc.set_edgecolor(colors[i])
pc.set_linewidth(2)
parts['cmeans'].set_color('#4927F5')
parts['cmeans'].set_linewidth(2.5)
parts['cmedians'].set_color('#1f2937')
for partname in ['cbars', 'cmins', 'cmaxes']:
parts[partname].set_color('#9ca3af')
# Target recovery line
ax.axhline(y=14, color='#22c55e', linestyle='--', alpha=0.7, linewidth=2)
ax.text(3.35, 14, 'Target', fontsize=9, color='#22c55e', va='center')
labels = ['Open Surgery', 'Laparoscopic', 'Robotic-Assisted']
means = [open_surgery.mean(), laparoscopic.mean(), robotic.mean()]
# Complication rate at bottom
complication_rates = ['8.2%', '3.5%', '2.1%']
for i, (rate, color, mean) in enumerate(zip(complication_rates, colors, means)):
ax.text(i+1, -5, f'Comp:{rate} | μ={mean:.1f}d', ha='center', fontsize=9, color=color, fontweight='bold')
# Significance bracket
y_max = 62
ax.plot([1, 1, 3, 3], [y_max, y_max+2, y_max+2, y_max], color='#374151', lw=1.5)
ax.text(2, y_max+3, '***', ha='center', fontsize=12, color='#F5276C', fontweight='bold')
# Stats at top
stats_text = f"ANOVA: F={F_stat:.2f}, p={p_value:.2e} | Fastest: Robotic"
bbox = dict(boxstyle="round,pad=0.3", facecolor='#f0fdf4', edgecolor='#27F5B0', lw=2)
ax.text(0.5, 1.02, stats_text, transform=ax.transAxes, fontsize=10, color='#1f2937',
ha='center', va='bottom', fontfamily='monospace', bbox=bbox)
ax.set_xticks([1, 2, 3])
ax.set_xticklabels(labels, fontsize=11, color='#1f2937')
ax.set_ylabel('Recovery Time (Days)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Post-Surgical Recovery by Technique\nCholecystectomy Procedure Comparison',
fontsize=14, color='#1f2937', fontweight='bold', pad=25)
ax.tick_params(colors='#374151')
for spine in ax.spines.values():
spine.set_color('#e5e7eb')
ax.yaxis.grid(True, color='#f3f4f6', linewidth=0.8)
ax.set_axisbelow(True)
ax.set_ylim(-10, 72)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More ANOVA Violin Plot examples
☕