Calendar Heatmap

Temperature Weather Calendar

Daily temperature heatmap showing seasonal patterns.

Output
Temperature Weather Calendar
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.patches as mpatches

np.random.seed(999)

days = 365
# Simulate seasonal temperature pattern (Northern Hemisphere)
base_temp = 15 + 15 * np.sin(2 * np.pi * (np.arange(days) - 80) / 365)
temp = base_temp + np.random.normal(0, 5, days)
temp = np.clip(temp, -10, 40)

temp_levels = np.digitize(temp, bins=[-20, 0, 10, 18, 25, 32]) - 1

weeks = 53
data = np.zeros((7, weeks))
for i, val in enumerate(temp_levels):
    week = i // 7
    day = i % 7
    if week < weeks:
        data[day, week] = val

# Cold to hot gradient
colors = ['#1e3a8a', '#3b82f6', '#22d3ee', '#fbbf24', '#f97316', '#dc2626']
cmap = LinearSegmentedColormap.from_list('temp', colors, N=256)

fig, ax = plt.subplots(figsize=(16, 4), facecolor='#0a0a0f')
ax.set_facecolor('#0a0a0f')

im = ax.imshow(data, cmap=cmap, aspect='auto', vmin=0, vmax=5)

ax.set_yticks(range(7))
ax.set_yticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'], fontsize=9, color='#e2e8f0')
ax.set_xticks(range(0, 52, 4))
ax.set_xticklabels(['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', ''], 
                   fontsize=9, color='#e2e8f0')

ax.set_title('Daily Temperature - Weather Patterns', fontsize=16, color='white', fontweight='bold', pad=15)

for i in range(8):
    ax.axhline(y=i-0.5, color='#1e293b', linewidth=0.5)
for i in range(weeks+1):
    ax.axvline(x=i-0.5, color='#1e293b', linewidth=0.5)

ax.tick_params(colors='#e2e8f0', length=0)
for spine in ax.spines.values():
    spine.set_visible(False)

legend_elements = [mpatches.Patch(facecolor=c, label=l, edgecolor='#334155') 
                   for c, l in zip(colors, ['<0C', '0-10C', '10-18C', '18-25C', '25-32C', '>32C'])]
ax.legend(handles=legend_elements, loc='upper left', bbox_to_anchor=(0, -0.15), ncol=6, 
          fontsize=8, facecolor='#1e293b', edgecolor='#334155', labelcolor='white')

avg = np.mean(temp)
max_t = np.max(temp)
min_t = np.min(temp)
ax.annotate(f'Avg: {avg:.1f}C | Range: {min_t:.0f}C to {max_t:.0f}C', xy=(0.98, 1.1), xycoords='axes fraction',
            fontsize=11, color='#fbbf24', ha='right', fontweight='bold')

plt.tight_layout()
plt.subplots_adjust(bottom=0.25)
plt.show()
Library

Matplotlib

Category

Time Series

Did this help you?

Support PyLucid to keep it free & growing

Support