KDE Plot
Typing Speed Distribution
KDE of typing speeds with proficiency levels.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(111)
typing = np.random.normal(55, 18, 1000)
typing = typing[(typing > 10) & (typing < 130)]
kde = stats.gaussian_kde(typing)
x = np.linspace(10, 130, 500)
y = kde(x)
fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
for i in range(len(x)-1):
if x[i] < 30:
color = '#F5276C'
elif x[i] < 50:
color = '#F5B027'
elif x[i] < 70:
color = '#27D3F5'
else:
color = '#6CF527'
ax.fill_between(x[i:i+2], y[i:i+2], alpha=0.5, color=color)
ax.plot(x, y, color='#27D3F5', linewidth=3)
levels = [(30, 'Beginner'), (50, 'Intermediate'), (70, 'Advanced'), (100, 'Expert')]
for val, label in levels:
ax.axvline(val, color='#9ca3af', linestyle='--', linewidth=1, alpha=0.7)
ax.text(val+1, max(y)*0.9, label, color='#6b7280', fontsize=8, rotation=90, va='top')
ax.set_xlabel('Words Per Minute (WPM)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Typing Speed Distribution', fontsize=16, color='#1f2937', fontweight='bold', pad=15)
ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
spine.set_color('#d1d5db')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(10, 130)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
☕