KDE Plot

Vehicle Fuel Efficiency Distribution

KDE comparing fuel efficiency across vehicle types.

Output
Vehicle Fuel Efficiency Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(103)

sedan = np.random.normal(35, 6, 400)
suv = np.random.normal(25, 5, 350)
truck = np.random.normal(20, 4, 250)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

x = np.linspace(5, 55, 500)

vehicles = [
    (sedan, 'Sedan', '#6CF527'),
    (suv, 'SUV', '#F5B027'),
    (truck, 'Truck', '#F5276C'),
]

for data, label, color in vehicles:
    kde = stats.gaussian_kde(data)
    y = kde(x)
    mean_val = np.mean(data)
    ax.fill_between(x, y, alpha=0.3, color=color)
    ax.plot(x, y, color=color, linewidth=2.5, label=label + ' (' + str(round(mean_val, 0)) + ' mpg)')

ax.axvline(30, color='#27D3F5', linestyle='--', linewidth=2, label='EPA Target')

ax.set_xlabel('Fuel Efficiency (MPG)', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Vehicle Fuel Efficiency by Type', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(5, 55)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support