Faceted Scatter Plot
Venture Capital Scaling by Sector
Funding-revenue relationship across venture sectors
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(3333)
industries = ['SaaS', 'Fintech', 'Biotech', 'E-commerce']
data = []
for ind in industries:
n = 44
funding = np.random.uniform(1, 100, n) # millions
growth_rates = {'SaaS': 1.8, 'Fintech': 1.5, 'Biotech': 0.8, 'E-commerce': 1.3}
revenue = growth_rates[ind] * np.sqrt(funding) + np.random.normal(0, 1.5, n)
for f, r in zip(funding, revenue):
data.append({'Funding ($M)': f, 'ARR ($M)': r, 'Industry': ind})
df = pd.DataFrame(data)
sns.set_style("whitegrid", {
'axes.facecolor': '#ffffff',
'figure.facecolor': '#ffffff',
'grid.color': '#eeeeee'
})
palette = ['#5314E6', '#6CF527', '#F5276C', '#F5B027']
g = sns.lmplot(
data=df,
x='Funding ($M)',
y='ARR ($M)',
hue='Industry',
col='Industry',
col_wrap=2,
height=3.5,
aspect=1.2,
palette=palette,
scatter_kws={'alpha': 0.75, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6},
line_kws={'linewidth': 2.5},
ci=95
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
g.fig.suptitle('Venture Capital Efficiency', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Pairwise Data
More Faceted Scatter Plot examples
☕