Violin Plot
Violin with Data Points
Violin plot with individual data points and mean markers
Output
Python
import matplotlib.pyplot as plt
import numpy as np
# Data
np.random.seed(42)
data = [np.random.normal(4, 0.8, 50),
np.random.normal(6, 1.2, 50),
np.random.normal(5, 1.0, 50)]
labels = ['Control', 'Treatment A', 'Treatment B']
# Colors
colors = ['#6366F1', '#10B981', '#F59E0B']
# Create figure
fig, ax = plt.subplots(figsize=(10, 6), facecolor='white')
positions = [1, 2, 3]
# Violin plot
vp = ax.violinplot(data, positions=positions, widths=0.8,
showmeans=False, showmedians=False, showextrema=False)
for i, body in enumerate(vp['bodies']):
body.set_facecolor(colors[i])
body.set_edgecolor('white')
body.set_linewidth(2)
body.set_alpha(0.4)
# Scatter points with jitter
for i, (d, pos) in enumerate(zip(data, positions)):
jitter = np.random.uniform(-0.12, 0.12, len(d))
ax.scatter(pos + jitter, d, c=colors[i], s=30, alpha=0.7,
edgecolor='white', linewidth=0.5, zorder=3)
# Mean marker
ax.scatter(pos, np.mean(d), c='white', s=120, marker='D',
edgecolor=colors[i], linewidth=2, zorder=4)
# Customize axes
ax.set_xticks(positions)
ax.set_xticklabels(labels, fontsize=11, fontweight='500')
ax.set_ylabel('Response Value', fontsize=12, fontweight='500', color='#374151')
ax.set_xlim(0.3, 3.7)
# Clean styling
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#E5E7EB')
ax.spines['bottom'].set_color('#E5E7EB')
ax.tick_params(colors='#6B7280', labelsize=10)
ax.yaxis.grid(True, linestyle='--', alpha=0.3, color='#9CA3AF')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Violin Plot examples
☕