Error Bar Chart
Wearable Device Accuracy Study
Accuracy comparison of popular fitness wearables across different health metrics.
Output
Python
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
metrics = ['Steps', 'Heart Rate', 'Calories', 'Sleep', 'Distance']
apple = np.array([97, 98, 85, 88, 96])
fitbit = np.array([95, 96, 82, 90, 94])
garmin = np.array([96, 97, 84, 86, 98])
err = np.array([2, 1.5, 5, 4, 2])
fig, ax = plt.subplots(figsize=(10, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
x = np.arange(len(metrics))
width = 0.25
ax.bar(x - width, apple, width, yerr=err, label='Apple Watch',
color='#374151', edgecolor='white', linewidth=1.5, capsize=4,
error_kw={'ecolor': '#6b7280', 'elinewidth': 1.5})
ax.bar(x, fitbit, width, yerr=err, label='Fitbit',
color='#27D3F5', edgecolor='white', linewidth=1.5, capsize=4,
error_kw={'ecolor': '#6b7280', 'elinewidth': 1.5})
ax.bar(x + width, garmin, width, yerr=err, label='Garmin',
color='#F5B027', edgecolor='white', linewidth=1.5, capsize=4,
error_kw={'ecolor': '#6b7280', 'elinewidth': 1.5})
ax.axhline(y=95, color='#6CF527', linestyle='--', linewidth=2, alpha=0.7)
ax.set_xlabel('Metric', fontsize=12, color='#374151', fontweight='600')
ax.set_ylabel('Accuracy (%)', fontsize=12, color='#374151', fontweight='600')
ax.set_title('Wearable Device Accuracy Study', fontsize=15,
color='#1f2937', fontweight='bold', pad=20)
ax.set_xticks(x)
ax.set_xticklabels(metrics, fontsize=11)
ax.legend(facecolor='#ffffff', edgecolor='#e5e7eb', fontsize=10, loc='lower right')
ax.tick_params(colors='#6b7280', labelsize=10)
ax.set_ylim(70, 105)
ax.grid(True, axis='y', alpha=0.4, color='#e5e7eb')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#d1d5db')
ax.spines['bottom'].set_color('#d1d5db')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Error Bar Chart examples
☕