Linear Regression Plot

Website Speed vs Conversion Rate

Web performance impact on business metrics

Output
Website Speed vs Conversion Rate
Python
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd

np.random.seed(407)
BG_COLOR = '#0a0a0f'
TEXT_COLOR = 'white'

n = 65
load_time = np.random.uniform(0.5, 8, n)
conversion = 8 - 0.9 * load_time + np.random.normal(0, 0.8, n)
conversion = np.clip(conversion, 0, 10)

df = pd.DataFrame({'Load Time (s)': load_time, 'Conversion Rate (%)': conversion})

fig, ax = plt.subplots(figsize=(10, 6), facecolor=BG_COLOR)
ax.set_facecolor(BG_COLOR)

sns.regplot(
    data=df,
    x='Load Time (s)',
    y='Conversion Rate (%)',
    scatter_kws={'color': '#F5276C', 'alpha': 0.7, 's': 55, 'edgecolor': 'white', 'linewidths': 0.5},
    line_kws={'color': '#27D3F5', 'linewidth': 2.5},
    ci=95,
    ax=ax
)

for collection in ax.collections[1:]:
    collection.set_facecolor('#27D3F5')
    collection.set_alpha(0.15)

ax.axvline(2.5, color='#22c55e', linestyle='--', alpha=0.5, linewidth=1)
ax.text(2.6, 1, 'Good', color='#22c55e', fontsize=9, rotation=90)

corr = np.corrcoef(load_time, conversion)[0, 1]
ax.text(0.95, 0.95, 'r = %.3f' % corr, transform=ax.transAxes, fontsize=12,
        color='#27D3F5', fontweight='bold', va='top', ha='right',
        bbox=dict(boxstyle='round,pad=0.3', facecolor='#1a1a2e', edgecolor='#333'))

ax.set_xlabel('Page Load Time (seconds)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_ylabel('Conversion Rate (%)', fontsize=12, color=TEXT_COLOR, fontweight='500')
ax.set_title('Website Speed vs Conversion', fontsize=14, color=TEXT_COLOR, fontweight='bold', pad=15)

ax.tick_params(colors='#888', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Pairwise Data

Did this help you?

Support PyLucid to keep it free & growing

Support