Ridgeline Plot
Website Traffic by Hour
Hourly visitor count distributions throughout the day
Output
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
np.random.seed(42)
hours = ['6 AM', '9 AM', '12 PM', '3 PM', '6 PM', '9 PM', '12 AM']
traffic_means = [500, 2500, 3500, 3000, 4000, 2000, 800]
traffic_stds = [150, 600, 800, 700, 900, 500, 200]
fig, ax = plt.subplots(figsize=(12, 9), facecolor='#ffffff')
ax.set_facecolor('#ffffff')
colors = ['#F5B027', '#F54927', '#F5276C', '#4927F5', '#276CF5', '#27D3F5', '#27F5B0']
x = np.linspace(0, 6000, 200)
overlap = 2.0
for i, (hour, mean, std, color) in enumerate(zip(hours, traffic_means, traffic_stds, colors)):
data = np.random.normal(mean, std, 1000)
data = np.clip(data, 0, None)
kde = stats.gaussian_kde(data)
y = kde(x) * 1500
y_offset = i * overlap
ax.fill_between(x, y_offset, y + y_offset, alpha=0.85, color=color, edgecolor='#374151', linewidth=0.8)
ax.text(-150, y_offset + 0.3, hour, fontsize=10, color='#1f2937', va='center', ha='right', fontweight='500')
ax.set_xlim(-700, 6000)
ax.set_ylim(-0.5, len(hours) * overlap + 2)
ax.set_xlabel('Visitors per Hour', color='#1f2937', fontsize=11, fontweight='500')
ax.set_title('Website Traffic Distribution by Hour', color='#1f2937', fontsize=14, fontweight='bold', pad=20)
ax.tick_params(colors='#374151', labelsize=9)
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
ax.spines['bottom'].set_visible(True)
ax.spines['bottom'].set_color('#e5e7eb')
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Ridgeline Plot examples
☕