2D Histogram

Wind Speed vs Power Output

2D histogram of wind turbine power generation versus wind speed.

Output
Wind Speed vs Power Output
Python
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LinearSegmentedColormap

np.random.seed(42)

# Wind energy data
wind_speed = np.clip(np.random.weibull(2, 5000) * 10, 0, 30)  # m/s
# Power curve: cubic up to rated, then flat
power = np.minimum(wind_speed**3 * 0.5, 1000) + np.random.normal(0, 50, 5000)
power = np.clip(power, 0, 1200)

fig, ax = plt.subplots(figsize=(10, 8), facecolor='#020B14')
ax.set_facecolor('#020B14')

# Custom colormap: lime to cyan
colors = ['#020B14', '#0d2d1a', '#6CF527', '#27D3F5']
cmap = LinearSegmentedColormap.from_list('wind', colors, N=256)

h = ax.hist2d(wind_speed, power, bins=45, cmap=cmap, cmin=1)
cbar = plt.colorbar(h[3], ax=ax, pad=0.02)
cbar.set_label('Readings', color='white', fontsize=11)
cbar.ax.yaxis.set_tick_params(color='white')
plt.setp(plt.getp(cbar.ax.axes, 'yticklabels'), color='white')

ax.set_xlabel('Wind Speed (m/s)', fontsize=11, color='white', fontweight='500')
ax.set_ylabel('Power Output (kW)', fontsize=11, color='white', fontweight='500')
ax.set_title('Wind Speed vs Power Output', fontsize=14, color='white', fontweight='bold', pad=15)

ax.tick_params(colors='white', labelsize=9)
for spine in ax.spines.values():
    spine.set_color('#333333')

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support