Correlogram
Wine Quality Features
Oenology correlogram of chemical properties by wine type
Output
Python
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import numpy as np
np.random.seed(123)
n = 160
wine_type = np.random.choice(['Red', 'White', 'Rosé'], n)
data = {
'Alcohol (%)': np.where(wine_type == 'Red', np.random.normal(13, 0.8, n),
np.where(wine_type == 'White', np.random.normal(11, 0.7, n), np.random.normal(12, 0.6, n))),
'Acidity': np.where(wine_type == 'White', np.random.normal(6.5, 0.8, n),
np.where(wine_type == 'Red', np.random.normal(5.5, 0.6, n), np.random.normal(6, 0.5, n))),
'Residual Sugar': np.where(wine_type == 'White', np.random.normal(6, 3, n),
np.where(wine_type == 'Rosé', np.random.normal(8, 4, n), np.random.normal(2.5, 1, n))),
'pH': np.random.normal(3.3, 0.15, n),
'Type': wine_type
}
df = pd.DataFrame(data)
sns.set_style("whitegrid", {'axes.facecolor': '#ffffff', 'figure.facecolor': '#ffffff', 'grid.color': '#eeeeee'})
palette = {'Red': '#9C2007', 'White': '#F5D327', 'Rosé': '#F527B0'}
g = sns.pairplot(
df,
hue='Type',
palette=palette,
height=2,
kind='reg',
diag_kind='hist',
markers=['o', '^', 's'],
plot_kws={'scatter_kws': {'alpha': 0.65, 's': 50, 'edgecolor': 'white', 'linewidths': 0.6}, 'line_kws': {'linewidth': 2}},
diag_kws={'alpha': 0.6, 'edgecolor': 'white', 'linewidth': 0.5}
)
g.fig.set_facecolor('#ffffff')
for ax in g.axes.flat:
if ax:
ax.set_facecolor('#ffffff')
for spine in ax.spines.values():
spine.set_color('#dddddd')
ax.tick_params(colors='#666666')
ax.xaxis.label.set_color('#333333')
ax.yaxis.label.set_color('#333333')
g.fig.suptitle('Wine Chemical Composition', fontsize=14, fontweight='bold', color='#1a1a1a', y=1.02)
plt.tight_layout()
plt.show()
Library
Matplotlib
Category
Statistical
More Correlogram examples
☕