KDE Plot

Workout Calorie Burn Distribution

KDE comparing calorie expenditure across exercise types.

Output
Workout Calorie Burn Distribution
Python
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

np.random.seed(109)

running = np.random.normal(450, 100, 400)
cycling = np.random.normal(350, 80, 400)
swimming = np.random.normal(400, 90, 300)
weights = np.random.normal(250, 60, 300)

fig, ax = plt.subplots(figsize=(12, 6), facecolor='#ffffff')
ax.set_facecolor('#ffffff')

x = np.linspace(50, 700, 500)

exercises = [
    (running, 'Running', '#F54927'),
    (swimming, 'Swimming', '#27D3F5'),
    (cycling, 'Cycling', '#6CF527'),
    (weights, 'Weight Training', '#4927F5'),
]

for data, label, color in exercises:
    kde = stats.gaussian_kde(data)
    y = kde(x)
    mean_val = np.mean(data)
    ax.fill_between(x, y, alpha=0.25, color=color)
    ax.plot(x, y, color=color, linewidth=2.5, label=label + ' (' + str(int(mean_val)) + ' cal)')

ax.set_xlabel('Calories Burned', fontsize=12, color='#1f2937', fontweight='500')
ax.set_ylabel('Density', fontsize=12, color='#1f2937', fontweight='500')
ax.set_title('Calorie Burn by Exercise Type (1 hour)', fontsize=16, color='#1f2937', fontweight='bold', pad=15)

ax.tick_params(colors='#374151', labelsize=10)
for spine in ax.spines.values():
    spine.set_color('#d1d5db')
ax.legend(loc='upper right', facecolor='#f9fafb', edgecolor='#d1d5db', labelcolor='#374151')
ax.grid(True, alpha=0.3, color='#e5e7eb')
ax.set_xlim(50, 700)

plt.tight_layout()
plt.show()
Library

Matplotlib

Category

Statistical

Did this help you?

Support PyLucid to keep it free & growing

Support